Thermodynamics of natural selection III: Landauer's principle in computation and chemistry.
نویسنده
چکیده
This is the third in a series of three papers devoted to energy flow and entropy changes in chemical and biological processes, and their relations to the thermodynamics of computation. The previous two papers have developed reversible chemical transformations as idealizations for studying physiology and natural selection, and derived bounds from the second law of thermodynamics, between information gain in an ensemble and the chemical work required to produce it. This paper concerns the explicit mapping of chemistry to computation, and particularly the Landauer decomposition of irreversible computations, in which reversible logical operations generating no heat are separated from heat-generating erasure steps which are logically irreversible but thermodynamically reversible. The Landauer arrangement of computation is shown to produce the same entropy-flow diagram as that of the chemical Carnot cycles used in the second paper of the series to idealize physiological cycles. The specific application of computation to data compression and error-correcting encoding also makes possible a Landauer analysis of the somewhat different problem of optimal molecular recognition, which has been considered as an information theory problem. It is shown here that bounds on maximum sequence discrimination from the enthalpy of complex formation, although derived from the same logical model as the Shannon theorem for channel capacity, arise from exactly the opposite model for erasure.
منابع مشابه
Generalising Landauer's Principle
In a recent paper [Mar05] it is argued that to properly understand the thermodynamics of Landauer's Principle it is necessary extend the concept of logical operations to include indeter-ministic operations. Here we examine the thermodynamics of such operations in more detail, extending the work of Landauer[Lan61] to include indeterministic operations and to include logical states with variable ...
متن کاملGeneralizing Landauer's principle.
In a recent paper [Stud. Hist. Philos. Mod. Phys. 36, 355 (2005)] it is argued that to properly understand the thermodynamics of Landauer's principle it is necessary to extend the concept of logical operations to include indeterministic operations. Here we examine the thermodynamics of such operations in more detail, extending the work of Landauer to include indeterministic operations and to in...
متن کاملThe End of the Thermodynamics of Computation : A No Go Result
The thermodynamics of computation assumes that computational processes at the molecular level can be brought arbitrarily close to thermodynamical reversibility; and that thermodynamic entropy creation is unavoidable only in data erasure or the merging of computational paths, in accord with Landauer’s principle. The no go result shows that fluctuations preclude completion of thermodynamically re...
متن کاملMaxwell ’ s Demon and the Thermodynamics of Computation Jeffrey Bub
It is generally accepted, following Landauer and Bennett, that the process of measurement involves no minimum entropy cost, but the erasure of information in resetting the memory register of a computer to zero requires dissipating heat into the environment. This thesis has been challenged recently in a two-part article by Earman and Norton. I review some relevant observations in the thermodynam...
متن کاملThermodynamics of Computation
It is generally accepted, following Landauer and Bennett, that the process of measurement involves no minimum entropy cost, but the erasure of information in resetting the memory register of a computer to zero requires dissipating heat into the environment. This thesis has been challenged recently in a two-part article by Earman and Norton. I review some relevant observations in the thermodynam...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of theoretical biology
دوره 252 2 شماره
صفحات -
تاریخ انتشار 2008